

2^{nde} SPC10 - La mole

Page internet: http://physique.chimie.vds.free.fr/2nde/2nde SPC10.html

Capacités visées dans le chapitre	Exercices	Activités, animation, vidéos, fiches
		videos, fiches
Déterminer la masse d'une entité à partir de sa formule brute et de la	Ex 1 et 2p105	Act. Doc. : Le basilic et
masse des atomes qui la composent.		ses milliards d'entités!
Déterminer le nombre d'entités et la quantité de matière (en mol)	Ex 4 à 7p91	
d'une espèce dans une masse d'échantillon.	Et 5 et 6p106	Vidéos de cours

L'essentiel: livre p102 QCM p103, Exercices de synthèse: 1p104 (résolu) et p106 à 109 Evaluation type p110

Evaluation diagnostique:

Q1- Cocher la ou les bonnes réponses :

Enoncé	А	В	С
Ce schéma représente :	Un atome d'eau	Une entité d'eau (molécule d'eau)	L'espèce chimique eau (Constituée d'un grand nombre d'entités identiques)
La formule chimique du	D'un atome de carbone et	De huit atomes de	De trois atomes de
propane est C ₃ H ₈ . Cette entité	d'un atome d'hydrogène	carbone et de trois	carbone et de huit atomes
est constituée :		atomes d'hydrogène	<mark>d'hydrogène</mark>
C₃H ₈ est :	La formule brute de la	La formule semi-	La formule de Lewis de la
	<mark>molécule</mark>	développée de la	molécule
		molécule	

Q2- Remplir le tableau de conversion ci-contre :

Sous unité	kg	mg	μg
Nom	kilogramme	milligramme	microgramme
Conversion en g	$10^3 g = 1000 g$	$10^{-3} g = 0.001 g$	$10^{-6}g = 0.000001 g$

I. Masse d'une entité

Formule brute d'une entité : écriture la plus compacte décrivant la nature et le nombre d'atomes de cette entité.

La masse m entité est égale à la masse des atomes qui la composent.

Application 1: Calculer la masse de la molécule de glucose : C₆H₁₂O₆

<u>Donnée</u>: $m(C) = 1,99 \times 10^{-26} \text{ kg}$ $m(H) = 1,67 \times 10^{-27} \text{ kg}$ $m(O) = 2,66 \times 10^{-26} \text{ kg}$

 $M(C_6H_{12}O_6) = 6 \times m(C) + 12 \times m(H) + 6 \times m(O)$

 $= 6 \times 1,99 \times 10^{-26} + 12 \times 1,67 \times 10^{-27} + 6 \times 2,66 \times 10^{-26} = 2,99 \times 10^{-25} \text{ kg}$

II. Un nombre d'entité N gigantesque

Donner la formule générale permettant de calculer le nombre d'entités contenus dans un échantillon de masse m :

$$N = \frac{m}{m_{entit\acute{e}}}$$
 avec N : nombre d'entités dans l'échantillon

m: masse de l'échantillon en kg

mentité: masse d'une entité en kg

Appliction 2 : Combien y a-t-il de molécule de glucose dans un échantillon de 5g ?

$$N = \frac{m}{m_{entit\acute{e}}} = \frac{5.\,10^{-3}~kg}{2,99.\,10^{-25}~kg} = 1,67~x~10^{22}~mol\acute{e}cules~dans~5~g~de~glucose.$$

III. Quantité de matière n

Le nombre d'entités (atomes, ions ou molécules, électrons) est gigantesque dans la matière. On compte les entités par « paquets », qu'on appelle « moles ».

La quantité de matière n correspond au nombre de moles (nombre de paquets) dans un échantillon.

Une mole d'entités est un « paquet » de 6.02×10^{23} entités. Ce nombre s'appelle la <u>constante d'Avogadro</u> : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$.

$$N=N_A \times n$$
 ou $n=\frac{N}{N_A}$ avec n en mol

Application 3:

Dans une prothèse en titane, on dénombre $2,37 \times 10^{24}$ atomes de titane. Calculer la quantité de matière de titane contenue dans cette prothèse.

$$n = \frac{N}{N_A} = \frac{2,37 \cdot 10^{24}}{6,02 \cdot 10^{23}} = 3,94 \text{ mol.}$$